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Problem Statement Our approach for unorganized images
Gos

We address the problem of reconstructing the Subject to L = ]D)(]I — W), t?"(]D)) =1,D =0, W].le, W =0 ¥

temporally evolving 3D geometry of set of points given § . . . _ —

a set unsynchronized 2D observations with unknown & (0 = {{xnp}, Ky}, {My}} denotes the aggregation of all input 2D observations and their camera parameters)
ordering and arbitrary temporal distribution. Our
problem, which straddles both trajectory triangulation = FEES=S
and image sequencing, naturally arises in the context of ,
uncoordinated distributed capture of an event (e.g. 8
crowd-sourced images or video)
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Experiments on synthetic imagery from motion capture
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Discrete Laplace Operator Estimation (DLOE) variants
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Dataset: Muller, 2007 DLOE w/ sequence «———— Require global sequencing
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Motivation Laplacian decomposition o et
Jointly estimate 3D geometry & graph’s discrete = o=@
Laplace operator L=DO- W) = 5
=2 =0
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The graph’s Laplacian defines the topology in W 4 he relat s - local neighborhood. and D d O e ® Dyr\;\&;mlc. Time Scalin . . . A u ,
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each row of W sum to 1 and positive.
\_ W, * Each row of of W is independent and able to optimize in parallel using
D A an efficient Active-set method (Chen, 2014). |
D is the graph’s diagonal degree matrix, whose * Result in solving a tri-convex optimization problem over W, D, and X. A - : I : ]
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COntrlbUthn 2) Il encodes ground truth temporal adjacency REan - o when neighboring viewing rays
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= A graph-theoretic formulation of the dynamic reconstruction problem, where 2D observations are mapped to nodes, 3D where, X,,. = X}, + l,7,.and solved by setting (c) Incidence angle 3 (@ b term analysis
geometry are node attributes, and spatiotemporal affinities correspond to graph edges. the derivative over [ to zero, yielding to M . .
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= The definition and enforcement of spatio-temporal priors, (e.g. anisotropic smoothness, topological compactness/sparsity, rTry - rhr = More accurate reconstruction is
and multi-view reconstructability) in terms of the discrete Laplace operator. B=(L"L+4LA+AD)O| ¢ =~ &) B R v -~ | attained for viewing directions Fvent3
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