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Experiments on synthetic imagery from motion capture

§ A graph-theoretic formulation of the dynamic reconstruction problem, where 2D observations are mapped to nodes, 3D 
geometry are node attributes, and spatiotemporal affinities correspond to graph edges.

§ The definition and enforcement of spatio-temporal priors, (e.g. anisotropic smoothness, topological compactness/sparsity, 
and multi-view reconstructability) in terms of the discrete Laplace operator.

§ Integration of available per-stream (e.g. intra-video) sequencing info into global ordering priors enforced in terms of the 
Laplacian spectral signature.
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Baseline methods
• Trajectory basis (Park, 2015)
• High-pass filter (Valmadre, 2012)
• Triangulation w/sequence

Require global 
sequencing
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• Self-expressive dictionary (Zheng, 2017)
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• DLOE w/ sequence
• DLOE w/ spectral prior
• DLOE (Independent images)

Discrete Laplace Operator Estimation (DLOE) variants
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Dataset: Muller, 2007
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Experiments on multi-view imagery
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Multi-Target Scenario
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Reconstructability analysis

Single iteration running time

Ablation analysis

Laplacian decompositionMotivation

𝕎 denotes the relative affinities in a local neighborhood, and 𝔻 denotes 
the density and flatness of the neighborhood

• Enforce sparsity of𝕎 through least squares minimization by constraining 
each row of𝕎 sum to 1 and positive.

• Each row of  of𝕎 is independent and able to optimize in parallel using 
an efficient Active-set method (Chen, 2014).

• Result in solving a tri-convex optimization problem over 𝕎, 𝔻, and 𝕏.
Assumption

1) is fixed
2) encodes ground truth temporal adjacency
3) Noise free 2D observations

Then, cost function becomes

where, 𝕏$,: = 𝕏$,:∗ + 𝑙$𝒓$.and solved by setting 
the derivative over    to zero, yielding to

Attain the lower and upper bound

Imaging  geometry convergence

Reconstruction error is reduced 
when neighboring viewing rays 
near orthogonality. Also, the 
error bounds get tighter.

3D motion observability

More accurate reconstruction is 
attained for viewing directions 
near orthogonal to the motion 
plane. Also, the error bounds 
get tighter.
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Goal
We address the problem of reconstructing the 
temporally evolving 3D geometry of set of points given 
a set unsynchronized 2D observations with unknown 
ordering and arbitrary temporal distribution. Our 
problem, which straddles both trajectory triangulation 
and image sequencing, naturally arises in the context of 
uncoordinated distributed capture of an event (e.g. 
crowd-sourced images or video)

What is known?
Ø 2D feature tracks
Ø Camera parameters and poses
Ø Local image sequencing in video capture

What’s the output?
Ø Global image sequencing
Ø Dynamic 3D structure

What’s the challenges?
Ø Non-rigid object motion
Ø No object model
Ø Unsynchronized image capture
Ø Unknown global image sequencing
Ø Arbitrary temporal sampling density and distribution
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(Θ = {{𝒙$,[}, 𝑲$ , {𝑴$}} denotes the aggregation of all input 2D observations and their camera parameters)  

Jointly estimate 3D geometry & graph’s discrete 
Laplace operator 

𝕃
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The graph’s Laplacian defines the topology in 
terms of the affinities between our 3D estimates

𝔻 is the graph’s diagonal degree matrix, whose 
values are the sum of the corresponding row in 𝔸


